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Abstract. Density functional calculations, in the local density approximation, are reported 
for hexagonal monolayers of Li, Be, Na, Mg, K: Ca, Rb and Sr. In parallel with the well 
known study of bulk metals by Moruzzi, Janak, and Williams, we calculate the equilibrium 
lattice parameter and the electronic properties at that configuration. Notable findings include 
the occurrence of both bond contraction and expansion, universal scaling of the equation of 
state, and densities of states at the Fermi level much larger than for bulk in Be and Sr. The 
possible existence and the characterisation of well localised surface states at r in Mg, Ca and 
Sr somewhat analogous to the state already found both experimentally and theoretically in 
Be are considered in detail. 

1. Introduction 

With this paper we begin a comprehensive theoretical investigation of the properties of 
the 31 elemental metallic monolayers with Z < 50. The treatment will focus on trends, 
hence will parallel and complement the well known systematic study of bulk metals by 
Moruzzi et a1 (1978; MJW hereafter). 

Although unsupported n-layers (n = 1 , 2 , 3 , 4 ,  . . . < roughly 10 atomic planes) are 
not a laboratory commonplace, there are several strong reasons for studying them 
theoretically. First, there has been a great deal of effort recently to study low-n overlayers 
on diverse substrates. This interest is largely a result of development efforts for smaller, 
faster electronic devices, with practical electronic devices rapidly approaching the limit- 
ing overlayer, n = 1. An essential aspect of understanding monolayers on substrates is 
to distinguish their intrinsic properties from those resulting from interaction with the 
substrate. An experimental example (Onellion et a1 1986, Dowben et a1 1987) is Hg on 
Ag( 100). This task requires independent knowledge of the properties of the unsupported 
1-layer . 

Second, the finite thickness of a film introduces a second scale length, in addition to 
the usual Fermi wavelength kF, which should produce quantum size effects (Gersbacher 
and Woodruff 1971, Cooper 1973, Schulte 1976, Mola and Vicente 1986, Feibelman 
1983, Feibelman and Hamann 1984, Ho and Bohnen 1985, Ciraci and Batra 1986, Craig 
and Garrison 1986, Batra et a1 1986). The two length scales are sensitive, distinct 
functions of equilibrium lattice spacing. When one recalls that the one-electron proper- 

0953-89841891274323 + 16 $02.50 @ 1989 IOP Publishing Ltd 4323 



4324 J C Boettger and S B Trickey 

ties even of simple bulk metals are sensitive functions of strain (Zittel et a1 1985), and 
that, for the few 1-layers treated thus far (Wimmer 1983a, Boettger and Trickey 1984, 
1986a, Batra 1985, Ciraci and Batra 1986), the predicted equilibrium lattice spacing 
differs quite significantly from calculated bulk values, it becomes clear that predicting 
quantum size effects in l-layers must be done at their calculated equilibrium lattice 
parameters. 

Third, we have demonstrated elsewhere (Boettger and Trickey 1986b) that it is 
possible to identify the precursor of a highly localised surface state among the electronic 
energy levels of a 1-layer. A systematic study of metal 1-layers may therefore yield 
predictions and/or verifications of such localised surface states. 

Here we treat the equilibrium geometry and properties for 1-layers of Li, Be, Na, 
Mg, K, Ca, Rb and Sr. As in MJW, the calculations are in the local density approximation 
(LDA) to density functional theory (DFT; reviews and references to original literature are 
found in March and Lundqvist 1983, Dah1 and Avery 1984, Callaway and March 1984, 
Langreth and Suhll984) in non-spin-polarised, non-relativistic form. Subsequent papers 
will treat the other elemental metallic 1-layers by periodic table grouping. So far as we 
are aware, the only directly relevant earlier work (other than ours: Boettger and Trickey 
1984, 1986a) is Wimmer’s (1983b, 1984) full-potential linearised APW treatment of 1- 
layers with unrelaxed (i.e., experimental bulk) lattice parameters. 

Section 2 summarises the relevant methodological features, § 3 treats the calculated 
cohesive properties (lattice parameters, cohesive energies, equation of state, bulk 
moduli, etc.), while 8 4 connects these results with work on universal equations of state. 
Kohn-Sham eigenvalues, densities of states, and possible surface states are presented 
in D 5 ,  with brief concluding commentary in § 6. 

2. Methods 

We solve the Kohn-Sham (KS) LDA equations by use of a substantially refined version 
of the linear combination of gaussian-type orbitals, fitting-function (LCGTO FF) scheme 
of Mintmire et a1 (1982), itself an extensive development of the procedure introduced 
by Sambe and Felton (1975). The calculations are fully self-consistent, include all 
electrons, and make no shape approximations regarding the LDA potential. The pro- 
cedure is more general than the muffin-tin KKR method used by MJW. Given the packing 
of most bulk metals, use of a muffin-tin potential surely introduces much smaller errors 
in those systems than it would were muffin-tinning to have been used in a 1-layer. 

In outline, the LCGTO-FFprOCedUre expands each KS orbital in a finite basis of hermite 
gaussian functions (hereafter, the ‘KS basis’). The calculation of coulombic matrix 
elements is speeded and the requisite number of primitive integrals reduced by expand- 
ing the charge density n(r) in a second basis of hermite gaussian functions (hereafter, 
the ‘Q basis’). The charge expansion coefficients are determined by variational mini- 
misation of the magnitude of the spurious coulomb energy introduced by charge fitting 
(Dunlap et a1 1979). Multipolar summations are used to incorporate coulombic con- 
tributions from remote sites, with stringent numerical tests to insure proper convergence. 

An additional auxiliary basis of hermite gaussians (the ‘XC basis’) is introduced to 
expand the two exchange-correlation functions which are non-linear in n(r) that are 
required in LDA calculations. These are the energy kernel .cXC[n] and the exchange- 
correlation potential Vxc[n], The xc expansion coefficients are determined by least- 
squares fit to Vxc[n] and ~ ~ , - [ n ]  generated from the fitted n(r) ,  using numerical inte- 
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gration to calculate the fitting matrix. Various constraints are built into the procedure, 
including that the density-weighted average of each of the fitted exchange-correlation 
functions be the same as that for the exact density (Dunlap et a1 1979, Andzelm et a1 
1985). The fitted density is monitored to avoid any significant spurious negative electron 
density on the numerical integral grid. 

In addition to the evident benefits of generality and flexibility afforded by this 
methodology, there are some potential vulnerabilities. The most obvious is selection of 
three interdependent basis sets. In previous work (Boettger and Trickey l984,1986a), 
we picked the KS basis from lists constructed for Hartree-Fock calculations, frequently 
with substantial modification from experience with crystalline LDA-LCGTO calculations 
and with testing, in the 1-layer, for approximate linear dependencies. Also in that work, 
the Q and xc bases were constructed according to ‘Dunlap’s rules’ (Dunlap et al1979). 
These fix each Q-basis orbital exponent as twice a KS basis exponent and each xcexponent 
as two-thirds of a KS exponent. The xc basis that results has the sometimes unfortunate 
property, of course, of being more diffuse than the KS basis, so even if the latter does 
not exhibit approximate linear dependencies, such an xc basis may behave quite nastily. 

Here we used the Dunlap rule for the Q basis in Li, Be, Na and Mg, with the xc basis 
identical to the KS one. The KS bases for Li and Be are from van Duijneveldt (1971) with 
p bases from crystalline experience. The KS bases for Na and Mg are from the tabulation 
of Huzinaga et a1 (1971) (specifically the second 12s and the 7p part of the 11s7p) with 
an added p function between the most diffuse and next-most diffuse p function, and the 
most diffuse p function then deleted for px and py but retained for pz. It is important in 
the Q basis to symmetrise the p2 (i.e. d-like) contributions into fitting functions with pure 
Cartesian d symmetry, so the Q basis must have the same number of px, pv and pz 
members. (The only d symmetry which is compatible with film symmetry is that which 
transforms as z2 - (x2 + y2)/2.)  Hence we applied Dunlap doubling to all the px and py 
functions and to all but the most diffuse pz to generate the Q basis. 

For K and Ca the KS bases are Wachter’s (1970) bases enriched by an additional 
diffuse px and py, the two additional pz, and a simple 5d. For Rb and Sr the KS bases are 
from Huzinaga (1977) with slight shifting of the outermost s functions, deletion of the 
tightest p, addition of one diffuse px and pr, two additional diffuse pz and a single diffuse 
d.  Generation of the Q basis by straightforward application of Dunlap’s rule however 
generates an s manifold which is a bit too heavy in compact functions and a d manifold 
which is far richer than needed. Therefore, for K, Ca, Rb and Sr, Q bases were manu- 
factured by the following procedure. First, double the most diffuse s exponent in the KS 
basis (an application of Dunlap’s rule). Then, temper inward (spatially) by a multi- 
plicative factor of 2.4 to construct nine more s members of the Q basis, then temper by 
3.00,3.50,4.50, and 6.00 to construct the remaining four s-type Q functions in K and Ca 
and also temper by 10.00 to gain one more tight s-type function for Rb and Sr. The d 
(= p2) part of the Q manifold was constructed by doubling the most diffuse KS p exponent, 
then tempering inward by a factor of 3.00 to generate five more functions. For K, Rb, 
and Sr all used the same d-manifold for the Q basis; this would have been the case for Ca 
as well except that we had already completed the calculations for Ca when the idea arose, 
The xc basis was generated in all four cases by dividing each Q basis exponent by two, a 
kind of inverse Dunlap rule. 

The bases which result range from (KS: 9s/5p; Q: 9s/4d; xc: 9s/4d) for Li to (KS: 17s/ 
12p,,,13pz; Q: 15s/6d; xc: 15s/6d) for Sr. For the sake of reproducibility, tabulations of 
all the bases are available on request from the authors. 

The most suitable choice of LDA model is a matter of much discussion. The Wigner 
interpolation formula added to Xa with a = f seems to give superior work functions, 
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for example (Feibelman 1983, Feibelman and Hamann 1984). Unambiguous comparison 
with MJW, however, requires the use of the same LDA parametrisation. Thus we used the 
Hedin-Lundqvist (HL) model (see MJW for references and parameters). 

By now it is well established that the bare KS eigenvalues are not rigorously inter- 
pretable as one-electron excitation energies (for references to this extensively studied 
problem consult Perdew 1986, Pickett 1986, Trickey 1986), except for the KS (Levy et 
a1 1984, Ambladh and Von Barth 1985). We report them nevertheless, just as did MJW, 
and as is near-universal practice (Wilkins 1980). The justification is in part continuity 
with MJW and the rest of the vast energy band literature, and partly that practical 
experience supports what the theorem just cited (about the authenticity of the KS E ~ )  

would lead one to hope, namely, that the worst deficiencies of KS eigenvalues as physical 
energy bands are for insulators and semiconductors or for metallic states far from the 
Fermi level. 

Simple coordination number arguments as well as test calculations argue persuasively 
for the system symmetry adopted here, hexagonal. (Wimmer 1983b also cited exper- 
imental evidence on overlayer formation in support of the same choice.) In terms of 
surface structure, this symmetry corresponds to BCC and FCC (111) or HCP (0001) faces. 
The calculations reported here utilised 19 points in the irreducible wedge of the two- 
dimensional BZ. All were converged to 0.01 mH iteration-to-iteration shift in total 
energy. 

In keeping with our goal of complementing MJW’S work, these calculations are non- 
relativistic. Wimmer’s monolayer studies (1983b, 1984) treated the core electrons fully 
relativistically and the valence electrons scalar-relativistically (i.e., with neglect of spin- 
orbit interactions). When comparisons of our results with his are made it may be valuable 
to keep this difference in mind. A more important difference, especially for the light 
elements, is that his calculations were made at nearest-neighbour distances cor- 
responding to crystalline values from experiment. 

3. Cohesive properties 

The calculated equilibrium nearest-neighbour spacing a, and binding energy E, are 
compared with the calculated bulk values from MJW in table 1 (where we have corrected 
the MJW calculated lattice spacing to its zero pressure by use of the bulk modulus which 
they calculated), Also compared there is Eb for monolayers at experimental bulk nearest- 
neighbour spacing as obtained by Wimmer (1983b, 1984). For the alkali metals, we have 
recalculated the cohesive energy given by Wimmer because he used the paramagnetic 
atom limit. On both physical grounds and for reasons of clarity of comparison with 
MJW, it is preferable to use the spin-polarised atom instead. Both spin-polarised and 
paramagnetic total energies for each atom were calculated with the same basis (the films 
basis enriched so that the px,y basis was as extensive as the pz basis). The paramagnetic 
atomic energies were calculated with the films code at a = 50 au in order to maintain 
algorithmic consistency, with spin-polarisation shifts calculated independently from a 
gaussian basis atom code (which does not employ fitting function techniques). The spin- 
polarisation shifts were added to the cohesive energy reported by Wimmer. In order 
that any other total energies be recoverable if desired, we report the paramagnetic and 
spin-polarised atomic total energies in table 2. 
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Table 1. Calculated equilibrium nearest-neighbour distance a, (au) and binding energies E,  
(eV) for 1-layers and bulk. Note that Wimmer’s (1983b, 1984) values are at experimental 
crystalline lattice spacings (column labelled ‘Expt’), not monolayer equilibrium. 

a, ( a 4  E b  ( ev)  

1-layer Bulk” 1-layer Bulk” 1-layer 
(present) (MJW) Expt (present) (MJW) (Wimmer) 

Li 5.78 
Na 6.64 
K 8.28 
Rb 8.92 

Be 3.99 
Mg 5.68 
Ca 7.01 
Sr 7.91 

5.55 5.70 
6.67 6.92 
8.30 8.55 
8.90 9.14 

4.19 4.20 
5.94 6.04 
7.08 7.46 
7.69 8.13 

-1.11 
-0.81 
-0.65 
-0.61 

-3.27 
-1.02 
-1.31 
-0.99 

-1.65 -1.01 
-1.12 -0.74 
-0.90 -0.58 
-0.65 -0.52 

-3.97 -2.94 
-1.69 -0.88 
-2.24 -1.17 
-1.89 -0.94 

a MJW (1978) adjusted via calculated bulk modulus to P = 0 value. 

Table 2. Atomic total energies and spin-polarisation shifts (Ryd). 

Element Paramagnet Spin-polarised shift 
~ 

Li 
Na 
K 
Rb 

Be 

Ca 
Sr 

Mg 

- 14.680 724 
-322.860 70 

-1196.3444 
- 5872.3431 

-28.909 64 
-398.25186 

-1351.4281 
-6258.5547 

-0.027 154 
- 0.023 536 
-0.019824 
- 0.01 6 728 

Typically Eb was calculated at six to eight values of a. The resulting curves are 
extremely well represented by a least-squares fit to the quadratic 

E,(a) = E,(a,) + ia2E/au2la,(a - a,)2.  

Therefore, the curves can be regenerated by use of the second derivative values given 
in table 3 for the range of a given there. 

From table 1 it is clear that Wimmer (1983b, 1984) found less binding than the present 
results. Only part of the difference can be traced to his use of experimental crystal lattice 
parameters, since all our binding energy curves lie below his at those lattice spacings. 
On the basis of K and Rb it would be tempting to attribute the remaining discrepancy 
to use of relativistic corrections, but the presence of a large percentage deviation for Be 
makes this notion implausible. The shifts with respect to our own prior Li and Be 
(Boettger and Trickey 1984,1986a) results are small and reflect continuing refinement 
of the algorithms used. Note that Wimmer found Mg to be the least bound alkaline earth 
1-layer and Rb the least bound alkali; we concur on Rb but find Sr slightly less bound 
than Mg. 
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Table 3. Second derivatives from quadratic fit to Eb, equation (l) ,  RMS deviation of that fit, 
and range of nearest-neighbour distances over which it was obtained. 

System a2E/aa2 IC,  (Ryd au-*)  de deviation (Ryd) Range of ann (au) 

Li 0.03041 
Na 0.02559 
K 0.01216 
Rb 0.01176 

Be 0.19102 
Mg 0.076 79 
Ca 0.04630 
Sr 0.03087 

1.4 x 10-5 5.60-5.95 

1.0 x 10-5 8.00-8.60 
4.0 x 10-5 8.40-9.40 

7.4 x 10-6 6.45-6.80 

3.9 x 10-5 3.85-4.15 
3.2 x 10-5 5.50-5.85 
4.9 x 10-5 6.7C-7.30 
8.0 x 10-5 7.40-8.40 

A trend which is immediately noticeable from table 1 is the contraction of nearest- 
neighbour separation in the alkaline earth metals. The situation in the alkali metals is 
subtler. Previously we (Boettger and Trickey 1986a) argued that , relative to experimental 
bulk lattice parameters (extrapolated to T = 0 K for Li by a density argument from BCC 
to FCC), the HL 1-layer calculations exhibited bond contraction for both Li and Be. 
Wimmer (1983a) had earlier found the same behaviour for Cs. A more systematic 
comparison is with calculated bulk values. From that perspective, the present results 
make clear that the lattice parameters of alkali metal 1-layers are not significantly 
contracted (taking the Na and K shifts as inconsequential) but are either close or 
expanded relative to bulk. This difference in predictions, depending on whether exper- 
imental or calculated bulk ann are used, arises because of what has usually been con- 
sidered to be a problem in the LDA itself. It is known that even in the same state (e.g., 
crystalline solid) the more refined the LDA model, the more contracted will be the ann it 
predicts (Jansen et a1 1984, Boettger and Trickey 1985, Blaha and Schwarz 1987), with 
calculated values from most models being smaller than the measured one. Comparison, 
therefore of the calculated 1-layer lattice parameter with the measured bulk value is very 
likely to give a prediction of 1-layer bond contraction just because of this idiosyncracy of 
the LDA. 

The comparison of 1-layer and bulk nearest-neighbour distance is also dependent on 
the problem of the proper crystal phase. In table 1 all the quoted alkali metal ann’s are 
MJW’S values for the BCC phase, even though, for example, Li is close-packed (Boettger 
and Trickey 1985 and references therein) at T = 0 K. Rescaling the BCC a,, to cor- 
responding FCC values for the same density, while perhaps tempting, turns out to be of 
questionable validity. The evidence for this is from our previous LSDA study of Li 
(Boettger and Trickey 1985) in which we found an FCC a,, = 5.577 au versus a BCC value 
of 5.473 au. That difference is two-thirds of what naive equidensity scaling would have 
predicted. Furthermore, MJW’S result for the BCC a,, is substantially larger than ours, 
perhaps as a consequence of the muffin-tin approximation they used. Under these 
circumstances, it seemed best to make the simplest comparison, hence the choice in 
table 1. 

The experimental evidence on alkali metal 1-layer lattice parameters is also some- 
what more tangled than might at first seem to be the case. Ignatiev and Fan (1986) have 
measured lattice parameters for 1-layers of Li, K, Cs, and A1 on graphite. For the Li 1- 
layer, they report a,, = 3.3 A or 6.236 au ‘about 6% larger than that for metallic Li’. 
This value is actually about 9% larger than any experimental bulk BCC Li a,, of which 
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Table 4. BQo for crystals (both calculated and experimental) compared (a2/8)(~ZE/aaZJequil,b 
calculated for monolayers. 

l-layer (present) 
(a2/8)(a2E/aa21eq"lllb (Ryd) 

Li 0.13 
Na 0.14 
K 0.11 
Rb 0.12 

Be 0.38 
Mg 0.31 
Ca 0.28 
Sr 0.24 

Experimental" M J W ~  BQo 
BQo (Ryd) (RYd) 

0.12 0.13 
0.13 0.14 
0.12 0.12 
0.12 0.11 

0.41 0.47 
0.36 0.42 
0.30 0.29 
0.29 0.33 

a Values of B are from following references. Li: Anderson and Swenson (1985); Na, K, Rb: 
Anderson and Swenson (1983); Be: value quoted by Chou e ta /  (1984); Mg, Ca, Sr: values 
quoted by Kittel(1976). Values of 5 2 0  are experimental data quoted by MJW (1978). 

MJW (1978). 

we are aware. It is, however, 6.3% larger than the nearest-neighbour spacing that FCC 
Li would have at the same density. The result seems to support l-layer bond expansion 
in Li, but the authors state that the Li data were ambiguous and could be interpreted as 
signalling the presence of Li2C2 rather than metallic l-layer Li. 

The K data of Ignatiev and Fan show an 8% decrease in l-layer ann relative to the 'K- 
K distance in bulk BCC potassium'. They used the bulk nearest-neighbour distance as 
ann = 4.62 8, = 8.73 au; Donohue's tabulation (1982) gives 8.55 au. Relative to the 
8.73 au (8.55 au) value for the bulk metal, our calculation shows a bond contraction of 
5.2% (3.2%). However, this apparent confirmation of alkali metal bond contraction in 
l-layers again is misleading, since it too is based on a comparison of the calculated 1- 
layer value with the measured bulk value. By comparison, the MJW calculation of the 
bulk bond length is contracted 2.9% relative to experiment. The purely theoretical 
prediction therefore is just what is shown in table 1: nearly negligible contraction of the 
K l-layer compared to bulk. The contraction found by Ignatiev and Fan is about 3% 
relative to this prediction. Possible explanations include: (1) undetected difficulties in 
the theoretical prediction, (2) substrate interaction causing the l-layers measured to 
differ from unsupported ones, and (3) undetected experimental difficulties. Without 
further measurements we cannot choose among these speculations. 

Two trends which can be discerned from table 1 are that, except for the Li-Be pair, 
the ratio Eb, l.,ayer/Eb,bulk is larger for the alkali metal than for the adjacent alkaline earth. 
The anomalous cohesive behaviour of Be has been noted before; we return to it shortly. 
Second, that cohesive energy ratio rises through the alkali series but falls through the 
alkaline earth series. Presumably this behaviour is associated with the approach by the 
alkali metals to free-electron-like behaviour, hence to some better correspondence with 
the electron-gas contributions in the LDA model. 

4. Universal equation of state 

On the basis of simple dimensional arguments, the product of the bulk modulus B and 
equilibrium unit cell volume Go should be proportional to a;,d2 E/da2. In table 4 we 
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Table 5. Universal EOS scaling lengths L for l-layers, bulk cohesion, and surface-surface 
bonding. l-layer results from present calculations via equation ( 9 ,  bulk and surface-surface 
values from Rose et a1 (1983). All values in au. 

Li 
Na 
K 
Rb 

Be 

Ca 
Sr 

Mi? 

1.638 
1.525 
1.982 
1.953 

1.122 
0.988 
1.442 
1.535 

1.039 
1.058 
1.228 
1.247 

0.586 
0.605 

1.946 1.5765 
2.060 1.4414 
2.419 1.6140 
2.494 1.566 

0.775 1.9147 
1.474 1.6331 

LILSS 

0.8417 
0.7403 
0.8194 
0.7831 

1.4477 
0.6703 

compare BQo for the crystal with (1/8) ai ,d2E/da2 calculated from the l-layer at 
equilibrium. The agreement is remarkable given the crudeness of the argument and 
leads us to consider more systematic scaling of the computed Eh(a) curves. In particular, 
consider the elementary algebraic rescaling of the harmonic fit (1) into the form 

Eh(a)  = Eh(a,)E,* (a*) .  

Here the scaled harmonic energy, dimensionless length, and scale length are respectively 

E ;  (a*) = 1 + ( ~ * ) ~ / 2  ( 3 )  

Precisely this sort of universal scaling of metallic equations of state (EOS), metal- 
metal adhesion, etc, has been studied in detail by Rose and co-workers (Rose et a1 1981, 
1983,1984, Smith et a1 1982, Ferrante et a1 1983, Guinea et a1 1984, Vinet et a1 1986) and 
others (Spanjaard and Desjonqueres 1984), albeit not in the context of a harmonic 
universal energy, E*. Modern exploration of such scaling seems to have begun with 
MJW. Recently Dodson (1987) has found a two-parameter scaling of bulk modulus 
with system density which holds for a remarkable range of metal crystals and alloys, 
semiconductors, and insulators and which relates reasonably well to a harmonic model. 

An important connection to universal scaling is the length scale ( 5 ) ,  which is identical 
with that adopted by Rose et al(l983) on other grounds. In table 5 we report the scale 
lengths L which result from our calculations and compare with their results for Lbulk and 
Lsurface when available. For the alkalis as well as Mg, we find systematic comparison, 
namely L/Lhulk approximately 1.5 i 0.1 and L / L ~ ~ ~ ~ ~ ~ ~  approximately 0.75 5 0.1 (no 
comparison data are available for Ca and Sr). 

The exception to this pattern is Be, with L/Lhulk = 1.9147 and L/Lsurface = 1.4477. 
This result parallels the Be length scale behaviour found by Rose et a1 (1983), who 
characterised Be as ‘completely anomalous’. They noted that for most metals the ratio 
Lhuik/Lsurface was, within lo%,  0.48, except for Be at 0.76. Clearly this scale length 
behaviour is another manifestation of the peculiar cohesive behaviour of Be (noted 
above) in going from bulk to l-layer. 
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Figure 1. (a)  Kohn-Sham eigenvalues (eV) and ( b )  Kohn-Sham density of states (states 
eV-'/atom) for hexagonal Li 1-layer. In (a )  symmetries with respect to the film plane are 
even (odd) for full (broken) curves. 

Table 6 .  Calculated l-layer and bulk work functions W (eV) and DOS at the Fermi level 
(states eV-'). 

- 
Li 
Na 
K 
Rb 

Be 

Ca 
Sr 

ME 

DOS at 

W (l-layer) W (bulk)" 1L (present) 1L (Wimmer) 

3.58 
3.16 
2.67 
2.55 

5.39 
3.99 
3.15 
2.92 

2.90 
2.75 
2.30 
2.16 

5.10 
3.66 
2.87 
2.59 

0.52 
0.44 
0.68 
0.73 

0.34 
0.60 
1.53 
1.31 

0.56 
0.55 
0.80 
0.87 

0.35 
0.57 
2.14 
2.32 

Bulkb 

0.48 
0.45 
0.73 
0.90 

0.054 
0.45 
1.56 
0.31 

* Be: Green and Bauer (1978); all others: Michaelson (1977) 
MJW (1978). 

Rose et a1 (1981) obtained an analytic form for E*(a") by fitting to calculated bulk 
metal and metal-metal interface binding energy curves. In our notation the fit is 

E*(a*) = (1 + 0.9a*) exp(-O.ga'). (6) 
It is intriguing to note that, even though obtained in an entirely different context, this 
form fits our calculated Li 1-layer results with an RMS deviation of 4 X eV over the 
range 5.6-5.95 au when L from table 5 is used. 

5. One-electron properties 

The energy bands (bare Kohn-Sham eigenvalues) and associated densities of states 
(DOS) are presented in figures 1-8, while the DOS at and work functions (W = - E ~ )  
are found in table 6. 
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[ a  1 Na monolayer 

Figure 2. As in figure 1 for Na. 

lo1 K monolaver 

r I M T ' K  T r 
Figure 3. As in figure 1 for K. 

Qualitatively the alkali metal bands and DOSS are not strikingly different, for the 
most part, from those of Wimmer (1983b, 1984). We do not find the low, rounded peak 
he finds at the bottom of every one of his DOSS but a pair of smaller bumps instead. This 
difference is solely a consequence of differing numerical techniques for BZ integration. 
Neither feature is physical, as can be seen by the nearly perfectly parabolic s bands at 
low energy found both by us and by Wimmer. For the two-dimensional BZ, such bands 
imply a low-energy DOS proportional to a step function; various bumps and peaks in the 
computed DOS reflect the ability or inability of a numerical technique to reproduce that 
step. 

Systematic comparison of calculated DOSS is possible both for bulk from MJW and 
from Papaconstantopoulos (1986) and for 1-layers with Wimmer (1983b, 1984). For Li, 
the two crystal calculations are very much alike with a sharp peak at about 0.5 eV (all 
energies with respect to E ~ )  and another (in Papaconstantopoulos' results) at about 
2.5 eV. We find very free-electron-like behaviour below sF with a well defined peak 
about 0.6 eV wide beginning at 0.4 eV; Wimmer finds essentially the same thing except 
that the high-energy shoulder of the positive energy peak is much less well defined. 
For Na the two bulk calculations are essentially identical, as are the two monolayer 
calculations, except that the first positive energy peak is calculated by Wimmer to lie 
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r I M T ' K  T r 
Figure 7. As in figure 1 for Ca. 
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slightly lower and be slightly narrower than we find it. In K, MJW find substantially more 
structure in the first two volts above E~ than does Papaconstantopoulos. This detail 
corresponds decently with that found in both 1-layer calculations, though we find a peak 
over 0.7-1.0 eV with much more definition than the corresponding object in Wimmer's 
results. The bulk Rb results agree that there is a sharp peak at about 0.2 eV and another 
of much higher amplitude at about 1.2 eV. Corresponding features occur in our 1-layer 
DOS, but shifted upward in energy by roughly one volt; Wimmer gets most of the same 
structure (one shoulder does not appear) over an energy range that is approximately a 
volt smaller. 

which are both smaller than Wimmer's 
and vary less with 2. The differences are as large as 20% (Na), hence should be 
discernible. MJW and Papaconstantopoulos agree on crystalline N ( E ~ )  values to within 
10% at worst (Na). The general agreement between our monolayer results and the two 
bulk calculations is no worse than that, except for Rb, where we find a 1-layer value 20% 
smaller than bulk. It would be nice to attribute this shift to relativistic versus non- 
relativistic calculations, but the attribution fails since the two bulk results are virtually 
identical. 

For all the alkali metals we determine 
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Turning to the alkaline earths, we recall that study (Boettger and Trickey 1986b) of 
KS eigenvalues in Be n-layers (n = 1 ,2 ,3 )  provided ynequivocal identification of the 
monolayer state at r of odd symmetry with respect to the plane which is 1.4 eV below 
cF (note figure 5) as the precursor of the highly localised state seen in clean Be surfaces 
by angle-resolved photo-emission. An important characteristic in that identification is 
that the state has no counterpart in the bulk crystalline bands. In this sequence of 
monolayers, we have seemingly similar states at r for Mg (at -0.55 eV with respect to 
cF), Ca (at -0.15 eV with respect to cF), and Sr (at -0.07 eV with respect to E ~ ) .  They 
are not computational artifacts, since Wimmer finds them as well. None has acounterpart 
in the bulk bands of MJW, but this comparison is inconclusive, since differences in space 
group symmetries intrude. 

There are angle-resolved photo-emission data (Karlsson et a1 1982, Bartynski et a1 
1986) for a surface state on the (0001) surface of Mg, but it is only 0.1 eV above the 
projected bulk bands (at -1.6 eV) and, unlike Be, lies below another set of projected 
bulk bands. Without 2- and 3-layer calculations, it is difficult to conclude that the weakly 
bound state at in the Mg l-layer is anything other than the precursor of the r3+ bulk 
state (cf Papaconstantopoulos 1986, p59). This conclusion seems to be reinforced by 
study of the six- and ten-layer periodically repeated slab results of Chulkov and Silkin 
(1986), though they did not display their one-electron energies in detail. 

There are also photoemission data (Ley et a1 1981) for a (111) Ca surface state of 
-0.6 eV at r and correspondingly at -0.5 eV for Sr. Those same authors also did 
slab calculations (7-layers, periodically repeated, local density, pseudopotential) which 
produced a surface state in good agreement with experiment. The way in which the state 
evolved with the number of layers was not addressed, however. Comparison of their 
DOS calculations with ours might suggest that we have identified this state as well, but 
even cursory examination of the Ca l-layer bands is enough to convince one that the 1- 
layer DOS peak at about -0.5 eV arises from the occupied bulk-like state at M. 

What is not clear from either the 1-layer bands or the DOS for Ca and Sr is whether 
the weakly bound states at r are surface or bulk state precursors. It may be that they 
signal the existence of highly localised surface states in the heavier alkaline earths, 
somewhat analogous with the r surface state in Be, but the identification is not com- 
pelling. (The fact that they lie too close to cF compared with experiment is not a 
prohibitive barrier to this interpretation, since highly localised states are pushed up in 
energy artificially in LDA calculations by spurious self-interaction; Boettger and Trickey 
1986b). Further study, on few-layer films and on slabs, will be needed to resolve the 
matter. In any event, the effective masses for these monolayer states will be quite large 
and rise substantially with increasing 2, since the bands in question flatten dramatically 
with 2. 

Direct comparison of l-layer and bulk DOSS for the alkaline earths shows some 
notable distinctions. The bulk Be DOS, according to MJW, has sharp peaks near -5.0 and 
+0.5 eV. Papaconstantopoulos finds the same two peaks at -3.1 and +1.6 eV; the 
difference is almost surely due to MJW'S use of FCC symmetry as opposed to Papa- 
constantopoulos' use of the (correct) HCP lattice. The Be l-layer has only one sharp 
peak below cF at -1.0 eV; Wimmer gets a broader version of this feature at about 
-0.7 eV. The most remarkable difference is a factor of five or more increase in the Be 
l-layer N(cF) as compared with the bulk result: l-layer Be is a better metal than its bulk 
counterpart. 

For bulk Mg, MJW find free-electron behaviour from the bottom of the DOS up to 
about -2 eV, where a small, sharp peak occurs followed by another just below the Fermi 
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level. In contrast, Papaconstantopoulos finds a rather ragged DOS below eF with a sharp 
peak around -0.6 eV. Again, the difference surely involves FCC (MJW) versus the actual 
HCP (Papaconstantopoulos) symmetry. Our 1-layer result is quite free-electron-like up 
to about -0.3 eV, where a sharp peak of substantial amplitude occurs. A pronounced 
shoulder occurs at about +0.9eV. Wimmer does not find that feature. The 1-layer 
calculations agree in predicting a larger N( eF) than for bulk (for which the two calculated 
values agree equally well). 

In a similar vein, our Ca DOS has narrow peaks and steep valleys upward from about 
+0.5 eV, while Wimmer's are mostly broader and shallower. Here the bulk calculations 
differ noticeably, with MJW finding a shoulder and then a sharp spike centred barely 
below eF, while Papaconstantopoulos obtains a spike centred on eF preceded by a slight 
flattening in the DOS. The result is a quite different value for the crystalline N(cF): 1.56 
states eV-' (MJW) versus 1.26 states eV-' (Papaconstantopoulos). This difference may 
arise from non-relativistic versus scalar-relativistic treatments, although at 2 = 20 it 
seems a bit unlikely. Superficially, the same problem appears to cccur for the 1-layer 
valuesofN(eF): 1.53 statesev-' (present)versus2.14stateseV-'(Wimmer). Inspection 
of Wimmer's DOS plot however, shows clearly a value of about 1.4 states eV-'. Though 
his plotted DOS is gaussian-broadened, we surmise that his tabulated value of N(eF) is 
from the unbroadened DOS. 

The same problem occurs for Sr. We get N(eF) = 1.31 states eV-' as contrasted with 
Wimmer's tabulated value of 2.32 states eV-' but a plotted value of about 1.5-1.6 states 
eV-', in much better agreement with our result. Both are much higher than MJW'S bulk 
value of 0.31 states eV-'. Papaconstantopoulos reports and plots N(eF) = 0.0 states 
eV-' for Sr. Examination of his band structure diagram shows clearly that there are 
states of finite (indeed, small) slope at eF, so the reported null value of N(eF) has to be 
an artifact of BZ sampling in his DOS calculation. We find a DOS peak at about -0.5 eV, 
another at eF, followed by two large-amplitude peaks in the next 1.5 V. Wimmer finds 
roughly the same features but with rather different amplitude ratios. 

Our present calculations of W differ by little from what we previously reported 
(Boettger and Trickey 1984, 1986a) for Li but by 0.6 eV (about 11%) for Be. The Be 
shift from the previous value is primarily due to basis-set enrichment and secondarily to 
algorithmic refinements. For the alkali metals, our results and Wimmer's agree quite 
satisfactorily. Both exceed experimental bulk values by significant amounts (0.4- 
0.7 eV). The concord of Wimmer's results with these is not quite so good for the alkaline 
earths, though only Be is at all striking. We discussed this aspect of Be 1-layer behaviour 
previously and have nothing to add here. As with the alkalis, calculated W's exceed the 
experimental bulk values by about 0.3 eV across the series. Whether this is a bulk to 1- 
layer shift or a deficiency from comparing KS eigenvalues with experimental bulk W 
values is unclear. 

6. Comments 

Several conclusions come out of this study. First, the claim that theory predicts bond 
contraction of metal 1-layers relative to bulk crystals cannot so far be sustained unam- 
biguously. A systematic prediction must avoid the known problem of lattice contraction 
in LDA relative to experimental values. Here we have avoided that problem by com- 
parison solely of calculated values. Contrary to the bond contraction hypothesis (and 
some experimental data on overlayers) we predict bond expansion for Li, negligible 
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contraction for the other alkali metals, modest contraction for the lighter alkaline earths, 
and weak expansion for Sr. Very careful, unambiguous experimental assessment is 
needed to help resolve the matter. 

Second, the calculated equations of state very clearly exhibit universal behaviour. 
This result is not entirely surprising if one reflects on the universal energy functional that 
is the heart of Hohenberg-Kohn theorem. Experimental verification that universal EOS 
scaling is valid for 1-layers (in addition to its known validity for bulk metallic cohesion, 
metal-metal interfaces, etc.) would be most interesting. 

Third, we suggest that well localised surface states at r may exist in Mg, Ca and Sr, 
somewhat analogously with Be, but that the identification cannot be made with certainty 
on the basis of monolayer results alone. For Be and Sr we predict much higher 1-layer 
values of N ( E ~ )  than found in the crystal. We also find work functions for all eight 1- 
layers which are substantially larger than experimental values reported for their bulk 
metallic counterparts. Experimental testing of these predictions would be very helpful 
in extending our understanding both of DFT in the LDA and intrinsic 1-layer properties. 

Succeeding papers in this series will treat monolayers of the remaining metals in MJW 
by their groupings from the periodic table. 
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